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Agenda
Why participation matters
Guiding principles
Trees
Some tips
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For more information
ldn.linuxfoundation.org/book/

how-participate-linux-community

-- or --

Documentation/development-process/
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Why?
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Why?

The kernel is the core of a Linux 
system
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Why?

It's how you get the kernel to meet 
your needs

“Well, this is open source... you don't get 
to request new features, you get to 
implement them”

-- James Bottomley
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Why?

External code is expensive
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Why?

External code is lower quality code
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Why?

In-tree code can be improved by 
others
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Why?

That is how our community works
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Why this talk?

Working with the kernel is not hard
...if you understand how the process 

works
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“So, I've had enough.  I'm out of here 
forever.  I want to leave before I get so 
disgruntled that I end up using Windows.  
I may play occasionally with userspace 
code but for me the kernel is a black hole 
that I don't want to enter the event 
horizon of again”

-- Con Kolivas
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Some guiding principles
...which should help in understanding 

how the kernel is made
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Upstream first

Code goes into the kernel first
...before going to customers
...before user space depends on it
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Not a differentiator

Vendors should not differentiate 
their offerings at the kernel level
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Not a differentiator

Vendors should not differentiate 
their offerings at the kernel level

(See “Upstream first”)
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Technical quality over all

Code quality outweighs:
Company plans
User desires
Existing practice
Developer status
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Long-term view

Kernel developers expect to be 
maintaining the code 5-10 years 
from now
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Peer review

No code is perfect
it can always be improved
heed requests for changes
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Developers are individuals

...separate from their employers
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No ownership of code

Even code you wrote
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No regressions

...even to fix other problems

“So we don't fix bugs by introducing new 
problems.  That way lies madness, and 
nobody ever knows if you actually make 
any real progress at all. Is it two steps 
forwards, one step back, or one step 
forward and two steps back?”
-- Linus Torvalds
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No inherent right to 
inclusion

Changes require justification
Other solutions may win out
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Trees
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Mainline kernel

Linus Torvalds's kernel
2-3 month release cycle
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The release cycle
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The release cycle
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-stable

Important updates to the mainline
Security fixes
Severe bugs
Maintained for ~6 months
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Distributor kernels

Based on -stable

May include significant changes
“enterprise” kernels especially

Maintenance period varies
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Development trees

linux-next
Staging area for the next mainline cycle
Patch integration
Early testing

-mm
Now based on linux-next
Collection point for miscellaneous patches
More early testing
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Subsystem trees

Development for a single subsystem
Feed into the mainline
...or another subsystem tree
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Subsystem maintainers

...are the true gatekeepers

But their power is not absolute
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The moral of the story

Developers should target 
subsystem trees
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Tips
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Getting started: companies

Develop skills in-house
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Getting started: companies

Get legal on board
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Getting started: companies

Ensure management understands 
the process
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Getting started: companies

Let your developers contribute



41

Getting started: developers
The #1 project for all kernel beginners 
should surely be "make sure that the 
kernel runs perfectly at all times on all 
machines which you can lay your hands 
on".

-- Andrew Morton
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Getting started: developers

Review code!
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Communication (1)

Communicate your plans early
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Communication (2)

Specify requirements carefully
“Why” instead of “what”
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Communication (3)

Listen
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Aim for the mainline

...early!

“Do NOT fall into the trap of adding more 
and more stuff to an out-of-tree project. 
It just makes it harder and harder to 
get it merged.  There are many 
examples of this”

-- Andrew Morton
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Posting code

Read the process document

Justify the change
What problem is fixed?
What feature is added (and why)?
Effects on performance?
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Where to post?

Find the subsystem mailing list

Find the maintainer

Consider linux-kernel
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Expect to make changes

No code submission is perfect
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Dealing with reviewers

Do not ignore reviews

Be nice to reviewers

Understand their motivation
Do not take it personally
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Signed-off-by:

Code submissions require a signoff
...a statement that it can be contributed 

under the GPL
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About linux-kernel

Volume is high
Discussion is ... uninhibited
It's where the community gathers

Avoiding l-k may be appealing
...but it has its hazards



53

Follow through

“Dump and run” submissions are 
not appreciated
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Be part of the process

The kernel needs you
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Questions?

Development process document
http://ldn.linuxfoundation.org/book/how-

participate-linux-community
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