
1

A Guide to the Linux Kernel
Development Process

Jonathan Corbet
LWN.net

corbet@lwn.net

2

Agenda
Why participation matters
Guiding principles
Trees
Some tips

3

For more information
ldn.linuxfoundation.org/book/

how-participate-linux-community

-- or --

Documentation/development-process/

4

Why?

5

Why?

The kernel is the core of a Linux
system

6

Why?

It's how you get the kernel to meet
your needs

“Well, this is open source... you don't get
to request new features, you get to
implement them”

-- James Bottomley

7

Why?

External code is expensive

8

Why?

External code is lower quality code

9

Why?

In-tree code can be improved by
others

10

Why?

That is how our community works

11

Why this talk?

Working with the kernel is not hard
...if you understand how the process

works

12

“So, I've had enough. I'm out of here
forever. I want to leave before I get so
disgruntled that I end up using Windows.
I may play occasionally with userspace
code but for me the kernel is a black hole
that I don't want to enter the event
horizon of again”

-- Con Kolivas

13

Some guiding principles
...which should help in understanding

how the kernel is made

14

Upstream first

Code goes into the kernel first
...before going to customers
...before user space depends on it

15

Not a differentiator

Vendors should not differentiate
their offerings at the kernel level

16

Not a differentiator

Vendors should not differentiate
their offerings at the kernel level

(See “Upstream first”)

17

Technical quality over all

Code quality outweighs:
Company plans
User desires
Existing practice
Developer status

18

Long-term view

Kernel developers expect to be
maintaining the code 5-10 years
from now

19

Peer review

No code is perfect
it can always be improved
heed requests for changes

20

Developers are individuals

...separate from their employers

21

No ownership of code

Even code you wrote

22

No regressions

...even to fix other problems

“So we don't fix bugs by introducing new
problems. That way lies madness, and
nobody ever knows if you actually make
any real progress at all. Is it two steps
forwards, one step back, or one step
forward and two steps back?”
-- Linus Torvalds

23

No inherent right to
inclusion

Changes require justification
Other solutions may win out

24

Trees

25

Mainline kernel

Linus Torvalds's kernel
2-3 month release cycle

26

The release cycle

27

The release cycle

28

-stable

Important updates to the mainline
Security fixes
Severe bugs
Maintained for ~6 months

29

Distributor kernels

Based on -stable

May include significant changes
“enterprise” kernels especially

Maintenance period varies

30

Development trees

linux-next
Staging area for the next mainline cycle
Patch integration
Early testing

-mm
Now based on linux-next
Collection point for miscellaneous patches
More early testing

31

Subsystem trees

Development for a single subsystem
Feed into the mainline
...or another subsystem tree

32

Subsystem maintainers

...are the true gatekeepers

But their power is not absolute

33

34

35

The moral of the story

Developers should target
subsystem trees

36

Tips

37

Getting started: companies

Develop skills in-house

38

Getting started: companies

Get legal on board

39

Getting started: companies

Ensure management understands
the process

40

Getting started: companies

Let your developers contribute

41

Getting started: developers
The #1 project for all kernel beginners
should surely be "make sure that the
kernel runs perfectly at all times on all
machines which you can lay your hands
on".

-- Andrew Morton

42

Getting started: developers

Review code!

43

Communication (1)

Communicate your plans early

44

Communication (2)

Specify requirements carefully
“Why” instead of “what”

45

Communication (3)

Listen

46

Aim for the mainline

...early!

“Do NOT fall into the trap of adding more
and more stuff to an out-of-tree project.
It just makes it harder and harder to
get it merged. There are many
examples of this”

-- Andrew Morton

47

Posting code

Read the process document

Justify the change
What problem is fixed?
What feature is added (and why)?
Effects on performance?

48

Where to post?

Find the subsystem mailing list

Find the maintainer

Consider linux-kernel

49

Expect to make changes

No code submission is perfect

50

Dealing with reviewers

Do not ignore reviews

Be nice to reviewers

Understand their motivation
Do not take it personally

51

Signed-off-by:

Code submissions require a signoff
...a statement that it can be contributed

under the GPL

52

About linux-kernel

Volume is high
Discussion is ... uninhibited
It's where the community gathers

Avoiding l-k may be appealing
...but it has its hazards

53

Follow through

“Dump and run” submissions are
not appreciated

54

Be part of the process

The kernel needs you

55

Questions?

Development process document
http://ldn.linuxfoundation.org/book/how-

participate-linux-community

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

